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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1995, VOL. 14, No. 1, 15-66 

Analysis of highly excited vibrational eigenstates 

by MICHAEL J. DAVIS 
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, USA 

Methods for the analysis of highly excited vibrational eigenstates are pre- 
sented. These include semiclassical and hierarchical analyses, along with a 
discussion of the nature of eigenstates along a correlation diagram. The purpose 
of the analyses is to extract information from what often appear to be compli- 
cated, ‘unassignable’ eigenstates. In particular, I address how to rationalize the 
nature of eigenstates via the semiclassical analysis and how to extract information 
concerning assignability and energy flow from the hierarchical analysis. The 
study of the eigenstates along a correlation diagram, together with the semiclassi- 
cal analysis, is undertaken to address the issue of the classical-quantum corre- 
spondence when the classical mechanics is chaotic. 

1. Introduction 
It is common in review papers to start by setting a general context for the 

research discussion in the article. I would like to start here a bit differently, 
discussing a specific set of results and leave the more general discussion for the next 
section. I wish to do this by presenting a figure that may strike many readers as 
overly complicated, and those who are uncomfortable with this are urged to start 
with $ 2  and come back here later. 

Figure I shows a series of quantum eigenstates for system (2) defined in $2.2.2. 
The eigenstates are not consecutive, starting with the fourth in the upper left and 
ending with the 160th in the lower right. These are contour plots of coordinate space 
representations of the absolute squares of the eigenstates, and it is straightforward to 
count the nodal planes for the first several of these (up to n = 39 or 46), and thus 
quantum numbers can be assigned to them. For example, the first state has two 
nodes and the second (n = 6) three. Note that the nodal planes become distorted as 
energy is increased, even where they can be counted. The most important trend in 
figure 1 is the breakdown of the progression with increasing energy. At first this 
happens in a gradual manner (n=46-62), but then the eigenstates become compli- 
cated and it is difficult to discern any progression, though several of the complicated 
eigenstates are similar (73, 82, 92 and 117 as well as the pair 129 and 160). 

It might seem strange to show such a complicated set of plots as figure 1, but I 
want to give a flavour for the complexity of the eigenstates of such a simple system, 
and also to set the tone for the rest of the paper. The first 12 panels of figure 1 show 
a pattern that breaks down in the last eight panels, where the eigenstates become 
complicated. The realization of the goals noted in the abstract depends on the 
discovery of such patterns, the understanding of their existence, and the extraction 
of useful information from complicated data, even when there are no apparent 
patterns. In this regard, the set of eigenstates presented in figure 1 were extracted via 
the hierarchical analysis of $ 3.2 as applied in 9 4.1 (see the discussions of figures 37 
and 38). 
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16 M. J. Davis 

2. Discussion 
2.1. Review 

This section contains the major part of the review of the literature, although 
there are many citations to other work in the rest of the text. The survey of other 
work is not exhaustive, and I apologize ahead of time for slighting anyone. One of 
the reasons for avoiding an extensive review is that a broad survey of the field 
relevant to the present work has appeared recently (Uzer 1991). 
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Figure 1.  A series of eigenstates for system (2) of 9 2.2.2. These have the same axes limits as 
the rest of the figures for this system (see figure 18 for axes labels). The headings 
indicate state number. 
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Analysis of excited eigenstates 17 

There are several areas which may be reviewed to put the present work in a 
broader context and three are chosen which are related to the study of intramolecu- 
lar energy transfer in bound or metastable molecules: (1) models of intramolecular 
vibrational redistribution (TVR), (2) analysis of spectra and eigenstates, and (3) the 
classical-quantum correspondence. 

2.1.1. Models of IVR 
A common method of modelling IVR pictures the process originating from the 

couplings of manifolds of states. In the simplest versions of this approach, which 
were developed to understand spectroscopic experiments and originated in the 
radiationless transition literature (Jortner et al. 1969, Freed 1976, Uzer 1991), a non- 
stationary state (called ‘bright’ state) is excited via some sort of photo-excitation 
process. Since it is not an eigenstate it will ‘decay’ (i.e. intramolecular energy transfer 
will take place). This is generally assumed to be due to the mixing of vibrational 
eigenstates, which can mix due to anharmonic couplings or coupling with rotations. 
The decay from the bright states occurs into a bath of ‘dark’ states which are often 
taken to be the eigenstates of the system. There are many recent papers discussing 
models of IVR within this general approach that have appeared since the survey by 
Uzer (1991), see, for example, Pate et al. (1991), Jonas et al. (1993), Perry (1993). 

Another way of modelling intramolecular energy transfer is less common and has 
its roots in the unimolecular reaction literature (Robinson and Holbrook 1972, Forst 
1973, Hase 1976) and we refer the reader to several articles in this area (Bunker and 
Hase 1973, Marcus et al. 1984, Davis 1985), with Uzer (1991) also providing a 
review. This approach is rooted in classical mechanics, and it models intramolecular 
energy transfer as the flow between various regions of phase space separated by 
intramolecular bottlenecks. A rigorous way to define bottlenecks for systems with 
two degrees of freedom has been developed in the nonlinear dynamics literature 
(MacKay et al. 1984, 1987), and it has been applied to intramolecular dynamics 
(Davis 1985, 1988, Davis and Skodje 1992). This approach will be an explicit or 
implicit part of the comments in the rest of the paper. The hierarchical analysis 
described below also fits well into the model discussed in the previous paragraph. 

2.1.2. Analysis of spectra and eigenstates 
The most common spectroscopic methods (Califano 1976, Hollas 1982, Papou- 

sek and Aliev 1982, Gordy and Cook 1984) are not discussed, because our main 
interests lie in spectra and eigenstates of highly excited systems, where these 
procedures tend to break down. One approach is statistical, and was developed in 
the nuclear physics literature (Brody et al. 1981). It relies on the premise that the 
spectroscopy of highly excited systems is so complicated that the best one can do is 
statistical analysis. Statistical approaches have been used many times in the 
chemistry literature to analyse energy levels (Haller et al. 1983, Lehmann and Coy 
1987, 1988, Persch et al. 1988, Chen et al. 1990, Hamilton 1990, Delon et al. 1991, 
Karrlein 1991), intensities (Levine 1988), and eigenstates (Burleigh and Sibert 1993). 

The statistical approaches have a couple of very useful features. First, they are 
based on well defined mathematical models and universal properties have been 
derived for the level statistics and intensity fluctuations of various limiting cases. 
Second, and related, is that it is possible to condense a large amount of information 
with a few parameters based on the universality of distributions. A drawback is that 
the methods may discard useful information, because they rely on statistics. 
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18 M. J.  Davis 

A second approach starts with the observation that even when spectra of highly 
excited molecules are complicated, lower resolution versions of them might be 
simple (Pique 1990). Characteristics of smoothed spectra have been associated with 
the classical motions of molecules (Gomez Llorente et al. 1990). It has been possible 
to assign smooth features (Yamanouchi et al. 1990, 1991), and to use this as an aid 
for understanding IVR processes (Jonas et al. 1993). A procedure for estimating 
‘quantum chaos’ is based on studying spectra as resolution is changed (Heller 1980). 

There are two drawbacks to previous work on the smoothing of spectra: only a 
few levels of resolution have been probed and the smoothing has not been done in a 
systematic manner. The hierarchical analysis developed in Davis (1 993) addresses 
these two drawbacks, providing a systematic procedure for studying smoothed 
spectra at all levels of resolution. Although the hierarchical analysis was originally 
developed to analyse experimental spectra, it provides a procedure to study energy 
transfer in detail if a theoretical model of the spectrum based on the eigenstates is 
available. This is done via the generation of ‘smoothed states’ (§3.2), which are 
associated with smoothed spectral features, as described in Davis (1992) (see also, 
Gomez Llorente et al. 1992), with a time-dependent procedure outlined earlier by 
Imre and co-workers (Zhang and Imre 1989, Tang et al. 1991) (see also Sadeghi and 
Skodje 1993). The use of the hierarchical analysis in conjunction with the smoothed 
states is related to the two approaches to IVR noted above. For example, the 
smoothed states at a given level of resolution might be thought of as ‘bright’ states 
compared to higher resolution ‘dark’ states. 

2.1.3. Classical-quantum correspondence for  highly excited systems 
There is a good understanding of the correspondence between classical and 

quantum dynamics for systems which are not highly excited, that is where the 
dynamics is quasiperiodic. The success of semi-classical quantization attests to this 
(Noid et al. 1981, Ezra et al. 1987). There are quantum effects in quasi-periodic 
regions of phase space, for example tunnelling (Davis and Heller 198 l), but these are 
well understood. The situation is different when the classical dynamics is chaotic. 
There has been some progress on systems whose dynamics is so chaotic that there is 
no regular motion whatsoever (hyperbolic systems, see, for example, Gutzwiller 
1990, and Gaspard and Rice 1989a-c). However, the relationship between the 
classical and quantum dynamics is not well understood when the dynamics is not 
hyperbolic. There are several recent books and review articles which address the 
relationship between classical and quantum dynamics for chaotic systems (Stechel 
and Heller 1984, Giannoni et al. 1991, Haake 1991, Reichl 1992). 

The approach presented here is a bit different than much of what is included in 
the above references, and it is outlined in previous papers (Davis 1988, Davis et al. 
1991). One of the differences is that it is based on understanding the correspondence 
in terms of perturbations (possibly very strong) on regular motion. This seems 
useful, because of the tradition in chemistry for classifying states, and eigenstates can 
be classified when the dynamics is regular (see above). It has been asserted 
(Gutzwiller 1988) that it is better to think of systems which are weakly chaotic (this 
includes most bound molecular systems), as perturbations on the hyperbolic limit. 
This may be a reasonable way to think about the classical dynamics, but quantum 
mechanics poses a different challenge. Consider the stadium billiard, which is an 
example of a system with no regular motion. It has been known for several years 
that its low-lying eigenstates appear regular (Shapiro et al. 1984, Bai et al. 1985). At 
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Analysis of excited eigenstates 19 

the same time, there are mathematical theorems (Schnirlman 1974, Colin de 
Verdiere, 1985, Zelditch 1987) which state that asymptotically (with energy) most 
eigenstates are evenly spread over the energy shell in a coarse grained sense. The 
question remains as to the nature of the eigenstates between the two limits, and 
because low-energy eigenstates are simple it seems reasonable that states at inter- 
mediate energies might be understood in simple terms. The methods outlined in this 
paper can be used to extract information about the classical-quantum correspon- 
dence for such classically chaotic systems and provide information about the nature 
of their eigenstates. 

2.2. Systems studied 
A brief review of the systems studied in this paper is presented. Although the first 

three systems are only two degrees of freedom, their dynamics can be complicated at 
high energy, and the study of them provides evidence for the usefulness of the 
analyses described below. 

2.2.1. System ( I )  
It consists of the following Hamiltonian: 

(1) 
1 1 

If = - 2 (P,” +p,z) + - 2 <O:xz +of y2) + Ax”, 

where ax= 1.1, my= 1.0, and A =  -0.11, with h set to 1.0 in the quantum and 
semiclassical calculations. The dissociation energy is 15.125. If has been studied 
several times in the past (Heller et al. 1980, Davis and Heller 1981, Davis 1988), and 
a modified version has been used to model a spectrum of benzophenone (Frederick 
et al. 1988). This system is of interest because it has a well defined quantum effect 
(Davis and Heller 1981), tunnelling between local mode doublets, and this can be 
used to gauge the degree of classical-quantum correspondence. The level of chaos 
exhibited in this system is weaker than the next two, but is probably more similar to 
realistic molecular systems. 

2.2.2. System (2) 
It consists of the following Hamiltonian: 

w,,=O.O059, D,=O.O88, a=0.01049 and y=O-5,  with all constants being au. It has 
been studied previously (Davis et al. 1982, Gibson 1987, Davis 1992, 1994a, b). At 
low energy the dynamics is regular, but there is widespread chaos by E = - 0.048, 
and what appears to be complete chaos at E = -0.008. 

2.2.3. Oval billiard 
This system is a one-parameter family of two-dimensional enclosures. The 

control parameter is 6. At 6=0-0 the billiard has the shape of the well known 
stadium. At 6=0.66325 it has the shape of a circle. There have been two studies of 
the classical dynamics of the oval billiard (Benettin and Strelcyn 1978, Henon and 
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20 M. J. Davis 

Wisdom 1983) and many studies of the classical and quantum dynamics of the 
stadium (for example, Bunimovich 1974, McDonald and Kaufman 1979, 1988, 
McDonald 1983, Taylor and Brumer 1983, Heller 1984, 1991, Shapiro and Goelman 
1984, Shapiro et al. 1984, Bai et al. 1985, Christoffel and Brumer 1986, Feingold et 
al. 1990, Meiss 1992). There has been one previous study of the quantum mechanics 
of the oval billiard (Davis et al. 1991). Although the oval billiard is not related to 
any molecular system, it is a very useful system to study because there has been so 
much work done on the dynamics of the stadium. 

2.2.4. OCHI- photodetachment spectrum 
This is the most realistic molecular system we have studied so far (Davis et al. 

1994), with preliminary w y k  also having been done on the intramolecular dynamics 
of H 0 2  (Gazdy and Bowman 1992). The hierarchical analysis of OHCl- follows 
several previous theoretical studies of this system (Koizumi and Schatz 1989, 1990, 
Koizumi et QZ. 1991). This case is reviewed here to demonstrate that it is straight- 
forward to apply the hierarchical analysis to a calculation of this type. 

2.3. Motivation 
Figure 2 shows a series of wavefunctions. The top left state is an eigenstate of a 

two-dimensional harmonic oscillator and the quantum numbers (3, 8) can be 
assigned by counting the nodes, with the first number referring to quanta along the 
x-direction. The next three states in figure 2 were generated for system (2). They are 
not eigenstates, but what we refer to as ‘smoothed states’, which will be described in 
$3.2. 

The next three states are ordered by complexity. The first (top right) is 
approximately an overtone in Cartesian coordinates and can be assigned as (0,lO). 
This is approximate because the state is distorted from an overtone in its nodal 

1 

Figure 2. States demonstrating some of the complexities which can be encountered in 
strongly coupled systems. 
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Analysis of excited eigenstates 21 

pattern and density build up, although a projection onto an appropriate harmonic 
oscillator basis set would indicate one dominant basis state (0,lO). The second state 
of this group (bottom left) is a bit more problematical. There are 20 nodes along a 
path which is approximately parabolic, but this case differs from the first in that no 
single term in an harmonic oscillator expansion would dominate. However, the 
shape of the state is the result of a 2:l Fermi resonance (for example, Noid et al. 
1979), and an inspection of its expansion coefficients should reveal this. A group of 
basis states which form a polyad (Kellman 1994) will carry most of the oscillator 
strength with the state, although it will show some overlap with many other states 
due to distortions in its shape and density build up. 

The last state in figure 2 (bottom right) presents two problems. Once again, an 
appropriate coordinate system may be difficult to define, although its shape is 
similar to the one on its left. The second problem appears more severe: it is difficult 
to assign a set of quantum numbers. One might wonder if it is part of a progression 
or is unassignable, and this will be addressed in $3.2. On the other hand it is difficult 
to imagine that this state corresponds to a statistical distribution, because it is 
relatively simple. 

Figure 3 shows a series of eigenstates for system (2). Most of the eigenstates are 
more complicated than the smoothed states of figure 2 and it is more difficult to 
assign them, though there are similarities. For example, the 113th eigenstate 
resembles the second state of figure 2 and the 102nd, 11 lth, and 122nd eigenstates 
resemble the third state of figure 2. It is difficult to find a close resemblance between 
the last state of figure 2 and any of the eigenstates in figure 3, although some are 
similar (n = 99). 

Figure 3 demonstrates the complexity of eigenstates of highly excited systems 
whose classical dynamics is very chaotic. The ability to assign states of systems with 
as few as two degrees of freedom is hampered by such complexity, with a further 
example being the eigenstates of the stadium billiard in figure 4. Many of the states 
in figure 4 appear hopelessly complicated, although there are some relatively simple 
ones (for example, 265 00 in the fourth row). Other states show distinct localization 
patterns, something first observed by McDonald (1983), which led to the work by 
Heller (1984) on what he called ‘scars of periodic orbits’. 

One of the goals of the work discussed here is the assignment of eigenstates like 
those in figures 3 and 4 in a manner similar to the first three states of figure 2. If this 
is not possible, then it would be useful to assign approximate quantum numbers, or 
to describe in a straightforward manner the energy transfer processes which cause 
the breakdown of assignments. Related to this point is another goal of the work: the 
nature of the classical-quantum correspondence for highly excited systems. For 
example, we have extended semi-classical quantization (Ozorio de Almeida 1988, 
Tabor 1989) into the chaotic region of phase space (Davis 1988). The extension was 
motivated by results like those presented in figures 5 and 6. 

Figure 5 shows a surface of section (Lichtenberg and Lieberman 1992) at the top 
left, followed by a series of eigenstates which are near it in energy. The scatter of 
points on the surface of section is for a single chaotic trajectory which explores a 
large fraction of the available phase space. Even though a single trajectory fills a 
large region, the eigenstates are rather simple. Phase space transforms of these states 
demonstrate that they are localized in phase space in the region of the trajectory at 
the top left of the figure, and they are all distinct, contrary to what might be 
expected from the trajectory. 
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Figure 3. Consecutive eigenstates for system (2) from n=96 to 125. 

The first three eigenstates in figure 5 are all halves of local mode doublets (Child 
and Halonen 1984). This case is interesting because an observable quantity reflects 
the classical-quantum differences observed in figure 5 .  Figure 6 shows a series of 
local mode doublet splittings. Such splittings are attributed to dynamical tunnelling 
(Davis and Heller 1981), which is normally expected when there are no classical 
trajectories connecting two equivalent types of classical motion, which are always 
coupled quantum mechanically because of symmetry. The splitting between the 
doublets goes down the farther apart in phase space the equivalent classical motions 
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Analysis of excited eigenstates 23 

n = 267 eo I381 - l?k3 
k =  66.8165 

n=281ee 
k =  66,8343 

n = E 8 e o  
k =  66.8672 

n=26loo 
k =  €6.9039 

n=275oe 

n=282ee 
k =  66.9364 

n=276oe 
k =  K9679 

n=269eo 
k =  67.0374 

n=283ee 
k =  67.0465 

n = m m  
k =  67.W 

n=263oo 
k = 67.D21 

n=277ce 
k =  67.V46 

n=2Wee 
k =  672'122 

n=27leo 
k =  67.2282 

n=2&5ee 
k =  672678 

n=264co 
k =  673283 

n = m e o  
k =  6 7 B  

n=Z7gce 
k =  67.4025 

n=286ee 
k =  67- 

n=273eo 
k =  675119 

n=287ee 
k =  675507 

n=274eo 
k =  675562 ~. . . 

n=2E6co 
k =  67.6279 

n=267co 
k =  67.6403 

n = m o o  
k =  67.6762 

n=280oe 
k =  67.6986 

n=Z75eu 
k =  67.7V2 

Figure 4. Eigenstates of the stadium billiard (52.2.3.). They are labelled by k(E = k2/2) and 
the state number for their particular symmetry. There are two lines of symmetry in the 
stadium and the labels are ee, eo, oe, and 00 with the first letter referring to even or 
odd with respect to reflection through the y-axis and the other label for the x-axis. In 
terms of all the symmetries, the eigenstates start at 1081 in the upper left and end at 
1 1  10 in the lower right. 

are, and thus one would expect that splittings would decrease as energy is increased 
if there were no classical trajectories connecting the equivalent motions. Figure 6 
shows examples of splittings which decrease with energy, but the classical chaos in 
figure 5 is widespread and classical trajectories can move between regions (figures 10 
and 11).  The small splittings are consistent with the localized eigenstates of figure 5, 
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._N = 10 E = W 3  

4- 0 
0 

2- 

* 0 -  

-2 - 

4- 

0 
0 

Figure 5. The top left plot shows a chaotic classical trajectory for system (1 )  at E=150. 
Included with the trajectory are four eigenstates which occupy this region of phase 
space, based on an inspection of their phase space transforms. 

ld 
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n 
(4 

Figure 6.  A series of splittings between adjacent states. At high energy the splittings become 
small, indicating the onset of local mode doublets. See the accompanying text and 
0 3.1. for further details. 

but inconsistent with the expectation of larger splittings when regions are connected 
by classical trajectories. It appears that the major route between the local modes is 
still tunnelling at  high energy, even though there are classical trajectory pathways 
between them. 

Another goal of the work is the extraction of information concerning intramole- 
cular energy transfer time scales and pathways from the eigenstates of a variational 
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Analysis of excited eigenstates 25 

calculation. Although intramolecular energy flow is a time-dependent process and it 
seems natural to investigate it with wavepacket dynamics, figure 7 demonstrates the 
difficulty in extracting useful information directly from such a calculation. Figure 7 
shows that the wavepacket looks simple up through the fourth panel (4461*7atu, 
approximately 2.8 periods of the lower frequency normal mode), but gets compli- 
cated after that. The fifth and sixth panels are at 6606.6atu (4.1 periods) and 
88 15.6 atu (5.5 periods) respectively, and their complexity demonstrates that a time- 
dependent calculation may be difficult to interpret. On the other hand, the 
eigenstates of figure 3 are also complicated. The hierarchical analysis described in 
5 3.2 provides information which lies between the two limits illustrated in figure 3 
and 7. 

This last point is emphasized in figure 8. The top plot shows a hierarchical tree 
resolved from a piece of the spectrum of the wavepacket in figure 7. The tree can be 
generated by convoluting the spectrum with windows of ever decreasing width 
(bottom left in figure 8) or by examining the Fourier transform of the convolution of 
a correlation function (lower right) with time windows of ever increasing width. 
Thus the tree can be used to study dynamics at ever increasing times, simply by 
going down the tree. Also, one can ‘divide and conquer’ a spectrum by studying it in 
different energy ranges chosen from selective cuts of a tree. For example, the tree in 
figure 8 can be split into two pieces by making a cut above its second highest node 
(see 6 3.2). These two operations-following dynamics down a tree and investigating 
dynamics for selective cuts of a tree-provide the time and energy decompositions 
noted in the previous paragraph. 

3. Types of analyses 
3.1. Semiclassical anaiysis 

Figure 9 presents a local mode doublet on the left. These eigenstates correspond 
to the point n = 11 in figure 6 (b) (the headings of the plots in figure 6 show normal 

I 

1 

1’ -5w1 3’ 

LLL 
11 -5001 11 -5001 1 1  -5001 

- - 
Figure 7. Time snapshots of a wavepacket moving in system (2). In the third panel of the top 

row the initial wavepacket (dotted contours) of the first panel is superimposed on the 
time evolved packet from the second panel. 
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Tree : r 1 
From : Or FT of : 
1- 

enerqy time 

Figure 8. Using the hierarchical analysis of §3.2., information similar to that shown in 
figures 3,4 and 7 can be processed. A tree generated from the analysis is shown in the 
top of the figure, and two ways of generating it are shown below it. 

mode quantum numbers (Davis 1988). Note the small splitting of these two states, 
with the headings indicating that the energies are equal to three decimal places. The 
local mode nature of these states is evident from linear combinations, presented on 
the right in figure 9. The eigenstates and wavefunctions in figure 9 are another 
example, along with the eigenstates in figure 5, of the apparent lack of any 
manifestation of classical chaos on the quantum eigenstates, a result noted pre- 
viously (Weissman and Jortner 1982) for another, similar system. Even though there 
is chaos and the two local modes can communicate classically, the major route 
between the wavefunctions appears to be tunnelling, evident in the localization of 
the eigenstates and the small splitting. 

The nature of the classical communication between the local modes is demon- 
strated in figure 10, which shows coordinate space plots of a trajectory at the same 
energy as the eigenstates of figure 9. These plots show time slices of a single 
trajectory, which moves from one local mode in figure lO(a) to the other in figure 
lO(c) by becoming normal mode-like in figure lo@). Figure 10(a) and (c) can be 
compared to the local mode wavefunctions in figure 9, which have similar shapes. 

The local-normal classical transition is investigated further with a surface of 
section for the trajectory of figure 10. Figure 11 (a)  shows the complete trajectory 
and figure 1 1  (b)-cf) show consecutive time slices of it. Figure 11 (b), (c) and cf) 
show the same time slices as figure 10 (a)-(c). Figures 11 (b)-cf) also include a solid, 
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> 0- > 0- 
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-4 - 

6 7 N  = 94 E = 13.814 6 7 N  = 94 + 95 E = 13.814 

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 
X X 

,N = 95 E = 13.814 6,N = 94 - 95 E = 13.814 

-6 I 
-6 -4 -2 0 2 4 6 

-6 I 
6 4 - 2 0  2 4 6 

X X 

Figure 9. A local mode doublet for system (1) is  on the left and linear combinations of the 
two states are on the right. 

figure eight shaped curve which is a what is known as a broken-up separatrix. This 
curve is a generalization to the chaotic region of the well known concept of 
integrable separatrix (Guckenheimer and Holmes 1983, Lichtenberg and Lieberman 
1992). The term 'broken-up' indicates that, unlike an integrable separatrix, trajector- 
ies can move across the curve from either the inside or outside. If the separatrix was 
integrable, no trajectories could behave like the one in figure 1 1. The degree of break 
up can be made more precise by calculating the amount of flux that flows across the 
separatrix for each iteration of the surface of section. 

Figure 6 showed that the number of small spacings increases with energy, which 
is evidence for an increase in the number of local mode states. The key to 
understanding this from a semiclassical perspective depends on the broken-up 
separatrix plotted in figure 11.  The size of the region enclosed by the separatrix 
increases with energy, as demonstrated in figure 12, with figure 13(a) plotting the 
size against energy. Figure 13(a) also includes dashed lines which indicate the 
Einstein-Brillouin-Keller (EBK) quantization conditions (Ezra et al. 1987) needed 
to support one (lowest curve) to four (highest) local mode doublets. At the energy of 
the states in figure 5, there is enough area to support three local mode doublets, in 
agreement with the quantum results presented there. 

The previous discussion rationalizes the presence of a certain number of local 
mode doublets. However, figures 5 and 1 1  show that trajectories move between the 
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x x :I 
-3 -3 

-6 -3  0 3 6 

X 
Pieces of a chaotic trajectory. In (a) the trajectory is in one local mode and in (c) 

it is in the other, symmetrically related one. Between these two it exhibits normal mode 
behaviour (b). 

Figure 10. 

two halves of the separatrix, while quantum flow occurs via tunnelling. The 
semiclassical rationalization for this discrepancy is given in figure 13 (b), which 
shows the flux across the separatrix against energy. The flux is always smaller than 
the amount of area needed to support a single quantum state, which is n(h = 1 .O), the 
quantizable action for a ground state, and this probably leads to the difference 

a 

-3 

-6 I l l 1  

n o  j;zl ,l"i;:. ~ /;zl 
-3 

-6 
- 6 - 3  0 3 6 - 6 - 3  0 3 6 - 6 - 3  0 3 6 

X X X 

Figure I I .  A surface of section for the trajectory from figure 10 in (a) and consecutive time 
slices of the trajectory in (b)-cf). The portions in (b), (c) and ( f )  correspond to figure 
10 (a-c), in that order. The plots also include a broken-up separatrix which demarcates 
local mode motion (b, d , f )  from the normal mode motion (c and e). 
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4 -  

2 -  

a 0- 

-2 - 
-4 - 
-6 

E = 13.0 61 (a)  E = 11.0 

lz, 
between the classical and quantum dynamics. Similar arguments have been made by 
others for different systems (Brown and Wyatt 1986a,b, Fisherman et al. 1986, 
Radons et al. 1986, 1989, Bohigas et al. 1993) where classical-quantum differences 
also occur. Further semiclassical analysis can be used to rationalize the localization 
of individual eigenstates (Davis 1988). 

3.2. Hierarchical analysis 
Our study of assignability and energy transfer starts with the generation of 

spectra formed from the overlap of wavepackets with the eigenstates of the system of 
study. The wavepackets are Gaussians: 

g(x, v) = exp [ - d x -  X O Y  - N,(Y -YoY + ip,(x - xo) + iP,(Y --Yo)], (4) 

with a,=0*022 and cr,=0-0325 for system (2). G(x ,y )  has expectation values of 
positions ( x o ,  y o )  and momenta (p, ,p,)  which centres it in phase space. The 
wavepacket of figure 7 has the following values: (xo ,  yo,p,,p,)=(O.O, 0.0, p,(E), 
-0-1), where p x ( E )  is adjusted so that expectation values of positions and momenta 
fix the centre of the wavepacket at a classical energy, here E =  -0.028. 

The spectrum of the wavepacket of figure 7 is shown in the upper left of figure 
14. Lower resolution versions of a middle portion are presented in panels b-f. The 
lower resolution versions were formed by convoluting it with a window function: 

Q(E)=xzkr(E, Ek) ( 5 )  

I k = I ( d X , Y ) \  y I k ) 1 2 ,  (6) 

where I , ,  the intensity of the kth line, is: 

and y k  is the kth eigenstate of the system to be studied. r is chosen to be a Gaussian 
with the following form: 

r ( E ,  Ek)=exp [-(E-J!?E,)2/02). (7) 
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M. J. Davis 

I I I I I I I 

24 

18 

12 

6 

U 

U 

I I I I I I I 

8.4 9.4 10.4 11.4 12.4 13.4 14.4 15.4 

E 
Figure 13. The top plot shows the area of the local-normal separatrix as a function of energy 

(solid line) plus dashed lines to indicate when the area is large enough to support a new 
quantum state based on semiclassical arguments. The dashed lines are for n=0-3. The 
bottom plot shows the flux across the separatrix against energy. 

3, (4 L 

Figure 14. A stick spectrum for the wavepacket described in the text is shown in (a) and 
smoothed versions of the middle portion of the spectrum (E= -0.0412 to -0.0103) 
are shown in (b)-cf). 
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The utility of smoothing is demonstrated by comparing figure 14(a) with figure 
14 (c) and ( d ) .  The stick spectrum has a series of tall lines which, except for a pair of 
lines at - -0.038, is monotonic. This might indicate a progression and the 
smoothed spectrum of figure 14 (c) confirms it. A better example of the utility is the 
comparison of the stick spectrum with figure 14(d). Although the pattern of figure 
14(c) might be anticipated from figure 14(a), it is more difficult to anticipate the 
series of small side peaks in figure 14(d). 

The rationale for a hierarchical decomposition of a spectrum is provided by the 
last four panels of figure 14. Small peaks split off large peaks, suggesting a parent/ 
child relationship among the peaks. By studying a spectrum as resolution is changed 
continuously, one can generate a genealogy of the lines, which can be visualized with 
a hierarchical tree, such as the one plotted in figure 15 for the spectrum of figure 
14 (a). This tree describes the way the spectrum evolves as resolution is changed. As 
peaks split off other peaks they form nodes on the tree. As one moves down the tree 
(i.e. resolution is increased or longer time-scales), more peaks are represented, with 
the number of peaks at a given level of resolution indicated by the number of vertical 
lines. The major features of the smoothed spectra of figure 14 are embodied in the 
tree. For example, the nodes starting at a width of 1.1 and descending to 0-7 describe 
a set of peaks, five of which are shown in figure 14 (c). At higher resolution the side 
peaks of figure 14 ( d )  are formed, and this is reflected in the set of nodes between 0.2 
and 0.3. 

A tree defines a genealogy for the lines of a spectrum. The distance between two 
lines is defined from the tree by the height of their most recent common ancestor. 
For example, the first and second lines of the spectrum are shown by the two vertical 
lines which descend at the bottom left of the tree in figure 15. These two lines meet at 
a width of 0-71, which defines the distance between the two. The matrix of all 
distances defines a relationship among all the lines of a spectrum, and this matrix is 
used for much of the statistical analysis described in Davis (1993) and applied in 
other places (Coy et al. 1994, Davis 1994a, b, Davis et al. 1994). We do not discuss 
the statistical analysis in this paper, and the interested reader is referred to these 
references. 

Using the tree of figure 15, groups of states can be associated with spectral 
features. For example, lines 2-4 of the tree of figure 15 are part of a group, as are 

7 
Figure 15. A hierarchical tree generated from the spectrum of figure 14(a). The y-axis has a 

scaled version of u (equation 7). To convert width to u, multiply by 0.00387. 
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r 

% 

0.1 - 

lines 3-4, because they result from a single cut of the tree. Lines 2-3 are not a group. 
These groups of states are used to generate ‘smoothed states’, which help to assign 
smooth features of a spectrum. Smoothed states are defined as: 

~ 

where L refers to the Lth group of the tree. The cL)s are the overlaps of the 
eigenstates with the initial state which generates a spectrum, the arguments inside the 
absolute value in equation (6). 

The group L in equation (8) is a subtree, because it results from a single cut of 
the tree. Figure 16 shows a series of subtrees extracted from the tree of figure 15 by 
making a cut all the way across the tree between 0.37 and 0.71. The subtrees in figure 
16(a)-(e) correspond to the peaks of figure 14(c) from left to right. They describe 
the evolution of the spectrum in localized regions of energy. It is the systematic study 
of subtrees that leads to the notion of ‘divide and conquer’. 

In studying energy transfer properties of highly excited systems we investigate 
smoothed states at all levels of resolution. A good way to start such an investigation 
is the examination of those states formed from a set of subtrees generated with a cut 
of the tree between two widely spaced nodes. From our experience, such states are 
most likely to be assignable, because large gaps indicate differences in time-scales, 
bottlenecks to energy transfer, or a combination of both. The subtrees in figure 16 
were chosen for this reason and the top row of figure 17 shows the smoothed states 
for these subtrees. The next two rows of figure 17 correspond to the peaks of figure 
14 (d), with the upper row of this pair representing the large peaks and the bottom 
the small peaks. The state labelled 107-120 in the middle row has previously been 
presented in figure 2. The states in figure 17 can be assigned a set of quantum 
numbers, thus assigning the peaks in figure 14 (c) and ( d ) .  The first set in the top row 
is an overtone progression in a coordinate which is mostly along the y-axis. The next 
two rows indicate that the peak/sideband structure of figure 14 ( d )  corresponds to a 
short overtone/combination sequence. 

The plots in figure 17 demonstrate that the hierarchical analysis can aid in 
assigning smoothed features of the spectrum, even when it is not obvious from the 
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Is- yI 
.% - no -78 - 95 

,m - 77 .w7- no 

I p,, O D  ; ,  , 

,E?J - €a 

Figure 17. Smoothed states from equation (8). The groups of eigenstates are listed on each 
plot. The top row shows overtones generated from subtrees in figure 16(a-e). The 
bottom two rows show smoothed states for the groups made by cutting the subtrees in 
figure 16 above their second highest nodes. 

fully resolved spectrum or the eigenstates (figure 3) that certain structures exist. This 
is emphasized in figure 18, which shows a series of eigenstates chosen from the 
hierarchical analysis, where they have been designated the parent line of a given 
peak. The eigenstates in the left column are parent lines of the large peaks in figure 
14 ( d )  and the eigenstates in the right column are the parent lines of the set of small 
peaks in figure 14(d). In the same way that it was difficult to observe the small peaks 
of figure 14(d) in figure 14(a), it is difficult to see a resemblance between the 
eigenstates in the right column of figure 18 and the smoothed states of the bottom 
row of figure 17. The eigenstates of the left column of figure 18 do resemble the 
smoothed states in the middle row of figure 17, but it is difficult to assign a set of 
quantum numbers to the eigenstates. 

The main reason the eigenstates of figure 18 are difficult to assign is the 
complicated intramolecular energy transfer of system (2). Figure 19 illustrates energy 
transfer by presenting two of the smoothed states (solid lines) from figure 17 on top 
of their respective parent eigenstates from figure 18 (dotted lines). One can observe 
in figure 19 that wavefunction density has moved out from along the direction of 
the overtone. Such detail is not evident from examination of either the eigenstates 
(figure 3) or the wavepacket (figure 7). 

The wavepacket of figure 7 has been used to generate results in two previous 
articles (Davis 1992, 1994a), because it yields simple plots of smoothed spectra 
(figure 14) and smoothed states (figure 17). However, system (2) has complicated 
dynamics, which led to the development of tools (Davis 1994b) to choose a set of 
wavepackets which would provide insight into the intramolecular dynamics of a 
system. These can yield interesting smoothed spectra and smoothed states, and 
figures 20-24 are presented to demonstrate this. 
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=ln=56 "1 n=49 

Figure 18. The eigenstates in the left column represent the parent lines of the smoothed 
states in the middle row of figure 17 and the eigenstates in the right column are the 
parents of the smoothed states in the bottom row of figure 17. 
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I I I  I I  I l l  

Figure 19. A comparison of two of the eigenstates (n = 72 and n = 1 13 see figure 18) (dotted 
contours) and two of the smoothed states. 

Figure 20. A portion of a spectrum for another wavepacket in system (2) is shown in the top 
plot and it is plotted again on the bottom plot, along with a smoothed version. The 
energy range of the spectrum is -0.0402 to -0.00928. 

Figure 20 has a stick spectrum on the top for a wavepacket (equation 4) whose 
expectation values of positions and momenta are (0.0, 66.22, p, (E) ,  0.0465), with E ,  
a,, and ay the same as the previous wavepacket. Unlike the spectrum of figure 14a, 
this one and smoothed verions of it (bottom plot) show no apparent regularity. Yet 
figure 21 shows smoothed states for peaks 1-5 and these are similar, evidence for a 
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36 M. J.  Davis 

progression, which can be assigned (Davis 1994b) once it is recognized they are 
distorted by a 5:3 classical resonance (Noid and Marcus 1986, Martens and Ezra 
1987). 

Figure 22 compares a set of eigenstates (left column) with smoothed states 
(right). The smoothed states were generated from a wavepacket at the same energy 
and with the same spread parameters as the previous two wavepackets, but it has 
different expectation values of positions and momenta: (0.0, - 15.107, p,(E), 0.227). 
The state on the top right of figure 22 has already been presented in figure 2. Figure 
22 again indicates how much easier it may be to assign smoothed states than 
eigenstates. 

A more complicated example of assignability is presented in figure 23, which 
shows smoothed states generated from groups extracted from the subtrees of figure 
16. Figure 16(e) and cf) indicate that there are distinct groupings for the combina- 
tion halves of each of the subtrees. These are the left halves of the subtrees which 
yield combination states like those in the bottom row of figure 17. There are three 
groups of states embedded in the combination halves (for example 121 -124, 125-128 
and 129-131 in figure 16(e)). The subtrees in figure 16(c) and ( d )  do not have such 
good groupings (the differences in nodal heights are not as great), but three groups 
from the combination halves of these subtrees are also presented in figure 23. The 
states are arranged in figure 23 so that the smoothed states from each of the 
combination halves of the subtrees are plotted along rows and what appear to be 
progressions are plotted along columns. The second row does not have the states in 
numerical order, as do the others, because there is not a complete progression in the 
last column, with the last two states being the only members of the progression. 

7 100- 103 74 1104- 106 134 

1107-109 95 11n - ll3 111 

Figure 21. Smoothed states generated for the five numbered peaks in figure 20. The order of 
these is from left to right on the top and then left to right on the bottom corresponding 
to peaks 1-5 in figure 20. 
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1" =r22 
Ilt3-m 50 

, n =I32 

In=* ,139-151 44 

1" =- ,152-164 39 

I 

,n=% 

Figure 22. Another comparison between the eigenstates (left column) of system (2) and 
smoothed states. 

Figure 23 shows evidence for progressions of states, based on the similarity of the 
plots in each column. This figure revisits the discussion of assignability for figure 2, 
because the 121-124 state in the first column, third row, was presented there. This 
state can be compared to the eigenstates n= 121-124 in figure 3, which are more 
complicated. An attempt to assign some of the states is made by seeking local nodal 
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patterns which simulate a 2: 1 resonance, because, as noted in §2.3., the 121-124 
state has the shape of a 2 : 1 resonant wavefunction. The picture of the state 121-124 
indicates the nature of the attempt, by including a parabola and a straight line. 
These are coordinates used to examine cuts across the wavefunction, with similar 
cuts used for the other two states in the third row. The wavefunctions along these 
cuts are presented in figure 24. The top row of Figure 24(u-c) shows cuts along 

178-81 59 

121 -124 86 

iM6-El 76 

182-85 81 

7125-128 El 

196-97 142 

1129-131 l32 

Figure 23. Smoothed states cut from the subtrees of figure 16. 
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..... ;i' ........... \..f J ....... .... \ 

Figure 24. One-dimensional plots from the smoothed states in the third row of figure 23 
along curves like those shown in the first state of row 3. The top row shows the 
wavefunctions along the parabolic paths and the second row along the straight lines. 

parabolic paths and the second row shows cuts along straight lines. Moving from 
left to right, the nodes decrease by two in the top row (19, 17, 15) and increase by 
one in the bottom row (2, 3, 4), and this ratio is another indication of the resonant 
nature of the states. 

Figure 23 is a good example of the usefulness of the divide and conquer aspect of 
the hierarchical analysis. This figure focuses on only a range of the spectrum, lines 
78-160. This range was chosen because the hierarchical analysis pointed to interest- 
ing groupings in the subtrees of figure 16 (e )  and (f). The analysis not only points to 
a range of the spectrum, but disconnected pieces of the range (78-87, 96-106, 121- 
131, 146_160), and this detail is difficult to observe without the hierarchical analysis. 

Figure 19 demonstrated the utility of the hierarchical analysis for the study of 
energy transfer pathways by comparing smoothed states with eigenstates. However, 
it only showed two levels of resolution, and the hierarchical trees define several levels 
and many pathways between the smoothed states and the eigenstates. We have 
found it useful to study energy transfer pathways by following paths down trees, as 
is done in figure 25. 

The top row of figure 25 shows two subtrees which were cut from trees generated 
from the spectra of two different wavepackets which are initially close to each other 
in system (2). The bottom four plots in each column of 25 show Husimi transforms 
(Husimi 1940) of smoothed states for the subtrees at the top of each column. The 
dots on each subtree indicate the paths taken down the subtrees which were used to 
discern groups of eigenstates summed to form smoothed states. The right column 
shows Husimi transforms of several states presented previously, the first two states 
in figure 17 and the last state in figure 23. 

Figure 25 demonstrates the way energy transfer pathways can be mapped out 
using the hierarchical analysis. It also makes a point about sensitivity to initial 
conditions. While the wavepackets lie relatively close to each other initially and the 
Husimi transforms of the initial smoothed states are similar (second row), energy 
transfer pathways differ at later times. In the right column, a piece of the wavepacket 
moves into a region which is dominated by a 2: 1 resonance (figure 22). In the left 
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! a6 
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96-120 16 1 
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Figure 25. These plots show how different energy transfer pathways come into play for 
different initial wavepackets. The right column was generated for the wavepacket of 
figures 7, 14, and many other plots in the paper. The left column was generated by a 
wavepacket with the same parameters as the wavepacket in the right column, but with 
(xo, yo, p,, p,) = (0.0, 14.74, p,(E), -0.093). The line types of the contours are ordered 
from lowest to highest in the following way: chain-dashed, dashed, solid, chain- 
dotted, dotted. The text has further details. 
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column, a smaller piece of that wavepacket moves into a different region, a 5: 3 
resonance (figure 21). 

3.2.1. Hierarchical analysis and correlation functions 
In this subsection we have not made an explicit connection with much of the 

work reviewed in Q 2.1. Here we wish to make a connection with one type of spectral 
analysis. This approach (Gomez Llorente et al. (1990), Pique (1990)), and appli- 
cations in many places (Delon et al. 1991)) starts with the Fourier transform of the 
spectrum (a correlation function; figure 7). The actual spectrum (including the 
intensities) or the energy spectrum (intensities assumed constant) is transformed. 
The transforms can be used to examine long-range correlations in a spectrum or can 
be used to associate its peaks with specific types of classical motion. We wish to 
point out how the hierarchical analysis can aid this approach. 

Figure 26(a) shows a correlation function for the wavepacket of $4.1. This 
function is the Fourier transform of the spectrum in figure 34(a). There are two or 
three distinct recurrences in the correlation function, but at later times there are no 
simple recurrences. Figure 26 (b ) shows the Fourier transform of a subtree of figure 
35 (lines 1-59) and figure 26(c) shows another portion of the spectrum generated 
from two cuts of the tree (lines 60-124; figures 35-38). These portions were chosen 
based on the analysis of 0 4.1 ., where it was noted there are distinct energy regions in 
the spectrum. The Fourier transforms in figure 26(b)  and (c) are simpler than the 
one in figure 26 (a), showing more distinct recurrences. 

3.3. Eigenslales of the oval billiard 
As noted in $2.2., the oval billiard is a one-parameter family of two dimensional 

enclosures. At one value of the parameter ( S = O . O )  it is the completely chaotic 

0.20 o’*s71 (b)  

0 5000 10000 15000 20000 

time 

Figure 26. The top left plot is an autocorrelation function for the wavepacket of 9 4.1. The 
other plots show autocorrelation functions for pieces of the spectrum of the wave- 
packet resolved from a hierarchical analysis. 
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stadium and at another value (6=0.66325) it is the integrable circle. Between these 
two limits there is a range of degrees of chaos. It is scaling in the sense that the 
classical dynamics is the same at all energies for a specific system (constant 6), apart 
from a time-scale. In terms of the previous two subsections, this means that all phase 
space structures remain the same at all energies, apart from their absolute sues, all 
of which scale as J E .  From a semiclassical perspective this allows for an increase in 
the number of states occupying a given region of phase space. However, at the same 
time areas are increasing, so are fluxes out of them (e.g. figure 13), which might 
allow for an increase in the quantum mechanical flow between regions. 

By following the eigenstates of the oval billiard with parameter, their bifurca- 
tions can be studied in a continuous manner. Bifurcations as a function of energy are 
followed by moving along a progression, which requires skipping over eigenstates 
(figure 29). We also hope to separate the effects of avoided crossings from other 
changes which might occur in the eigenstates and smoothed states. It has been 
proposed that multiple avoided crossings lead to quantum chaos (Noid et al. 1980). 

Figure 27 presents a series of shapes showing the way the oval billiard changes 
with 6. A correlation diagram for several states of a given symmetry is shown in 
figure 28. Because the billiards are similar to the particle in the box, it is convenient 
to express eigenvalues in terms of the wave-vector, k, with energy defined as follows: 

E = k2/2.  (9) 

6 = 0.2 6 = 0.4 

Figure 21. Plots showing how the shape of the oval billiard changes as a function of 6. 

Peanut to Circle 
80 

74 

68 - 

66 .  
64 

62 I t i I 
-0.10 0.09 0.28 0.47 0.66 

6 
Figure 28. A correlation diagram for the eigenstates of the oval billiard which have even- 

even symmetry. The diagram includes adiabatic eigenstates 260-340. 
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Analysis of excited eigenstates 43 

Like systems (1) and (2), the stadium billiard eigenstates undergo bifurcations as 
energy is increased. The first 12 plots (up to 12oe) of figure 29 demonstrate that 
there is a bifurcation from stretching to circulating eigenstates. Husimi transforms of 
the eigenstates are presented in figure 30, along with a separatrix, which is drawn 
with a thicker line. This separatrix is formed by following the stable and unstable 
manifolds of the periodic orbit (Lichtenberg and Lieberman 1992) which is at the 
centre of the plot (this orbit moves horizontally between the two semicircles on 

lee lOe 2ee 2oe 
k =  26925 k =  3.4780 k =  4.4670 k =  5534 

(@i) 

3ee 
k = 6.6153 

4oe 6ee 6oe 
k =  78071 k =  8.8605 k =  9.9603 

8 ee 8oe nee l2oe 
k =  ll.0549 k =  12tBl k =  13.2007 k =  14.2269 

l5ee l 5 O e  19 ee 2ooe 
k =  152385 k = l6.%!8 k =  VSW k =  Bl297 

24 ee 24 oe Bee 29- 
k =  19.0824 k =  201)614 k =  210661 k =  22.0923 

Figure 29. Low-lying eigenstates of the stadium billiard. The eigenstate 4oe is in the middle 
of an avoided crossing. 
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n =  3ee 
k =  6.663 

I 

n =  l5ee 
k=, 

n =  24- 

M. J. Davis 

n =  4oe 
k = 7.8071 

n= 8oe 
k =  Cl281 

1 

n =  25oe 
k =  E.BB 

n =  24ce 
k =  20.0614 

n =  6ee 
k = 8.8605 

- 
n =  Bee 
k =  7.W 

n =  B e e  
k =  210661 

I 

n =  6 %  
k =  99603 m 

n= l2oe a 

n= 20% 

n =  Boe a 

Figure 30. Husimi transforms of the eigenstates of figure 29. Included as a thick dark line is 
a broken-up separatrix. The line types have the same meaning as they do in figure 25. 

either end of the stadium). It is the generalization to the stadium of the integrable 
separatrix which separates precessional from librational motion in the elliptical 
billiard (Keller and Rubinow 1960). The bifurcation is shown in phase space in the 
first eight plots of figure 30. First the maxima (dotted contours) lie right on top of 
the periodic orbit. As energy is increased the single maxima of each eigenstate split 
into two, which lie inside the separatrix (12ee and 12oe). Although these eigenstates 
have their maxima inside the separatrix, there is noticeable density outside it. 

If this was the elliptical billiard, or an oval billiard with a higher value of 6, there 
would be a series of eigenstates after the first twelve of figure 29 for which the 
number of radial nodes would increase with energy, reflecting the fact the eigen- 
states, once inside the separatrix do not leave at all (elliptical billiard) or until much 
higher energy (non-integrable oval billiard with higher value of 6). Figure 31 shows 
an example of such a case for 6=0.3. 
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Analysis of excited eigenstates 45 

2ee 6 = 0.300 4ee 6=0.300 6ee 6 =  0.300 
k = 5.0792 k =  7.6879 k = lO.1813 

H)ee 6 = 0.300 14ee 6 = 0.300 18ee 6 =  0.300 
k = 12.5746 k = 14.9172 k = l7.2312 

2 ee 6 = 0.300 
k = 5.0792 

10 ee d = 0.300 
k =  12.5746 

I 

4 ee 6 = 0.300 
k = 7.6879 

I 

14 ee 6 = 0.300 
k =  14.9172 - 

6 e e  6 = 0.300 
k = 10.1813 , 

18 ee 6 = 0.300 
k = 7.2312 

Figure 31. A bifurcation for the oval billiard with 6=0.3.  The top two rows show 
coordinate space plots and the bottom two Husird transforms, which also include a 
separatrix. 

The change in the eigenstates of the stadium evident in the last eight plots in 
figures 29 and 30 poses an interesting problem. Unlike the cases studied above, 
where the classical chaos is weaker, progressions of eigenstates do not remain inside 
the separatrix after they enter. The situation in figures 29 and 30 is interesting 
because it shows the breakdown of the picture presented in 5 3.1. and several recent 
references (Gibson et al. 1987, Davis 1988, Radons and Prange 1988, Benito et al. 
1989, Bohigas et al. 1993). The change also occurs for higher values of 6 at higher 
energies, and we are pursuing an explanation presently. It is possible to make the 
qualitative argument that the eigenstates are headed in the direction of the classical 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



46 M. J.  Davis 

n=205ee 
k =  57.0323 

n=204oe 
k =  57.6132 

n=213ee 
k =  582W 

n=2lloe 
k =  58.8971 

n=225ee 
k =  59.6777 

n=252ee 
k =  63.5634 

n=225oe 
k =  605329 

n = 253 oe 
k =  64.3141 

n=238ee 
k =  614536 

n=239oe 
k =  62.4040 

n=268ee 
k =  €S2& 

n=269oe 
k =  &.ED3 

n=283ee n=284oe n=299ee n=301oe 
k =  67.0465 k =  67.9378 k = 68.9137 k =  69..8884 

Figure 32. Plots which follow a localized eigenstate of the stadium (283ee) to lower and 
higher energy. 

flow, and since the flux across the separatrix is so large, this is bound to happen. But 
our goal is to develop a quantitative rationalization for this phenomenon, which 
seems possible because, while the eigenstates move outside the separatrix, they are 
still localized. 

Bifurcations of eigenstates of the stadium also occur at higher energy, and figure 
32 demonstrates this, showing plots which follow a single type of eigenstate. The 
type of eigenstate is shown in panels 11-14 (states 268ee to 284oe), and it has the 
shape of a double diamond. One of these eigenstates, 283ee, has been presented 
previously by Heller (1984) as an example of a scar of a periodic orbit. These 
eigenstates demonstrate the difficulty in applying the approach of Heller either in its 
original form (Heller 1984) or a modified version (Heller 1991). Neither of his 
approaches can account for the trend pictured in the figure, the presence of a certain 
type of eigenstate for a narrow range of energy. 

Figure 33 follows the double diamond state of the stadium as 6 is varied. The 
eigenstate loses the double diamond shape in both directions in parameter space, a 
result that is once again difficult to rationalize with Heller's scar formalism. 
Bifurcations as a function of parameter will be discussed again in 0 4.2., but at lower 
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283ee 6=5.026 
k =  665606 

283ee 6 = - 0 r n  
k =  E6.6048 

283ee 6=5.022 
k =  66.6352 

283ee 6=-0.OM 
k =  66.6476 

283ee 6=-0.018 
k =  66.5639 

283ee 6=-OSJK 
k =  66.6931 

2838e 6=-0Dl4 
k =  66.7407 

283ee 6=-o.ot3 
k =  E6.8297 

283ee 6=-0.008 
k =  66.8754 

283ee 6=4.006 
k =  66.9163 

28% 6 = - O . U  
k =  66.W 

28333 6=-0.W 
k =  67.0073 

2- 6 =  0 . ~  
k =  67.0465 

283ee 6 =  0.m 
k =  67.0940 

284ee 6 = 0.012 
k =  67.3833 

283ee d = O . U  
k =  67.1450 

2&2ee 6 =  0.006 
k =  672009 

284es 6 =  0.M38 
k =  67.2592 

284ee 6 = 0.on 
k =  673203 

284ee 6=o.M4 
k =  67.4478 

284ee 6 =  0.m 
k =  67334 

284ee 6 = 0.018 
k =  675194 

286ee 6 = 0.022 
k =  67.7259 

286ee 6 =  0.024 
k =  67.7896 

28see d =  0026 
k =  678570 

?Bh 6 = 0.028 
k =  67.9245 

6 = 0.020 
k =  67.6436 

me 6 = 0.033 
k =  67.9333 

Figure 33. The 283ee state of the stadium (third row on the right) followed in parameter 
space. 

energy and higher 6,  where semiclassical analysis is more straightforward (there is 
less classical chaos and the flux across the separatrix is smaller). 

4. Case studies 
4.1. Hierarchical analysis 

Figure 34 (a) shows a spectrum for a wavepacket moving in system (2) centred at 
(0.0, - 34.77, p , (E) ,  -0.256) with the same E ,  ax, and a,, as the ones in § 3.2. Figures 
34 (b) -c f )  show a middle portion of smoothed spectra, and these can be compared 
to figure 14. The peaks in figure 34(c) are more closely spaced than those in figure 
14 (c), indicative of wavepacket motion which has slower recurrences. 

The spectrum in figure 34 (a) has three distinct regions. The transitions between 
the regions may be difficult to observe in the stick spectrum, because of the size of 
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0.6 - 

0.5 - 

0.4 - ’ 0.3- 

0.2 - 

0.1 - 

0.0 - 

f 

energy 

Figure 34. A spectrum (a) and smoothed spectra (b-f) for another wavepacket described in 
the text. The smoothed spectra are for a middle portion of the stick spectrum 
( E =  -0.0402 to -0.00754). 

the plot. The first transition is evident on figure 34 ( d )  and (e), where there is a shift 
in location of the side peak from the left to the right side as energy is increased, but 
is more obvious in the hierarchical tree representation in figure 35. A series of nodes 
between 0.1 and 0-2 starting at the left become lower in the middle of the plot. The 
second transition occurs at high energy, evident in the higher nodes on the far right 
side of the tree. To better view the branching of the tree in figure 35, a series of 
subtrees are presented in figure 36, which were cut from the tree above 0.2. These 
subtrees correspond to the peaks of figure 34 (c). 

A set of smoothed states are plotted in figure 37 which are at the same resolution 
as figure 34(c). Although the shapes of the states are distorting with increasing 
excitation, they form an overtone progression in a coordinate system which is 
evolving with energy. The number of nodes starts at two in the first plot on the 

o.8 0.7 4 

Figure 35. A tree from the spectrum of figure 34 (a). The widths are scaled in the same way 
as figure 15. 
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Analysis of excited eigenstates 49 

I 

Figure 36. Subtrees generated by cutting the tree of figure 35 just above a width of 0.2. 

upper left and ends at 21 in the last plot on the lower right. Comparison of figures 3 
and 37 once again emphasizes the utility of the smoothing. There is no strong 
evidence in figure 3 for the type of localization observed in figure 37. The states in 
figure 37 can be compared with the eigenstates in figure 1, which are their parents. 

The transitions in the spectrum of figure 34 (a)  are evident in smoothed states at a 
higher level of resolution. Figure 38 shows 15 pairs of states which result from 
cutting subtrees like those in figure 36 above their second highest nodes. The first 
transition occurs in the middle row where the order of the pairs switches (the 
overtones are associated with the larger peaks in figure 34 (d ) ) .  In the middle pair of 
the middle row one of the smoothed states (66-68) becomes a bit jumbled, but then a 
pattern emerges, The states 86-88, 96-99 and 107-109 are distorted by a 3:2 
classical resonance. Later the second transition occurs and the last two states 
associated with the smaller peaks change appearance (bottom right). These states are 
effected by the 2: 1 resonance zone described above. 

The smoothed states in figure 38 are another example of the divide and conquer 
aspect of the hierarchical analysis. These states were chosen from the hierarchical 
analysis by cutting subtrees above their second highest node, not by cutting the full 
tree at a given height, and thus these states are not all at the same level of resolution, 
or time-scale. The need for this can be observed in figure 34. In figure 34 ( d )  some of 
the side peaks are not developed, and in figure 34(e) when all side peaks are 
developed, there are additional peaks. 

The results presented in this subsection and the analysis of the phase space 
structure of system (2) (Davis 1994b), suggest the following reason for the first 
transition. At low energy there is either no 3:2 resonance or there is not enough 
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50 M. J. Davis 

phase space in the 3 : 2 resonance, and the smoothed states do not reflect resonant 
motion. At higher energy there is enough phase space to support states and the 
smoothed states are influenced by the resonance. The onset of the classical resonance 
is the reason for the breakdown of the progression in figure 1 .  The classical chaos 
becomes severe in this system and '3 : 2 resonance' is used in the sense of 0 3.1. That 
is, there is a resonance zone which has a flux out of it smaller than the quantizable 
action, or the dynamics is localized inside the resonance zone for a time suficient for 
it to be reflected in the smoothed states. 

l5 -6 34 
1' - 9  

I 

1- 26 

I 
74-49 31 I=- 33 

1a-63 50 

1 

,78-88 43 1--= 51 lw-m 168-n 

L 
p- lEa 23 lm-= 44 

0 

Figure 37. Smoothed states generated from groups resolved by cutting just above 0.2 in 
figure 35. Some of the subtrees for these states are shown in figure 36. 
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IS Analysis of excited eigenstutes 51 

Figure 38. Pairs of states corresponding to the larger and smaller peaks of figure 34(4 and 
(e).  The states which look like those in figure 37 are for the higher peaks. 

The second transition results from the breakdown of the effect of the 3 : 2  
resonance zone. There are four plausible reasons why this happens. First, the 
resonance zone may become too small to support quantum states. Second, the 
resonance may disappear entirely at higher energy. A third possibility is that the flux 
out of the resonance may become too large for it to support states. A fourth 
possibility is that the phase space structure distorts sufficiently that a wavepacket 
which is centred inside the resonance zone at low energy, no longer is prominently 
inside at high energy. Figures 39 and 40 suggest that the reason is one of the first 
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1" -99 51 

I I I I I I I I I  

51 

I I I I I I I I I  

ig6 -g: 59 

ig6 -= 59 ig8-% 

Figure 39. A decay pathway for one of the states of figure 37 (fourth row). The path for this 
state is on figure 36(e).  The top row shows coordinate space plots and the bottom 
Husimi transforms of the same states. 

,125-138 45 iu4- 138 93 1137-138 147 

I I I I I I I I I  

Figure 40. A decay pathway for another state of figure 37 (bottom row). The path for this 
state is on figure 36(h). 
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Analysis of excited eigenstates 53 

three. Figure 39 shows results for one of the overtone states from figure 37 and 
figure 40 shows results for another. These are pictured in the upper left of each figure 
in coordinate space and a Husimi transform is presented on the lower left of each 
figure. Each then shows the results of paths down their respective subtrees, which are 
illustrated with dots in figure 36(e) and (h) .  The overtone state of figure 39 first 
shows the effects of a 3 : 2 resonance, and then spreads into another region of phase 
space. 

The remainder of figure 40 shows the development of the higher energy overtone 
state. Note again that this state misses the 3 : 2 resonance zone, which is also evident 
in the Husimis. The last picture in the sequence shows that a piece of the overtone 
state has entered into a different region of phase space, which was present on the left 
column of figure 25, a 5 : 3 resonance zone. Comparison of the last column of figure 
39 with the middle column of figure 40 indicates that a piece of the lower energy 
overtone state enters a region of phase space similar to the initial excursion of the 
higher energy overtone. The comparison of figures 39 and 40 lends credence to the 
first three of the four possible reasons for the second transition. The higher energy 
overtone is in a position to be influenced by the 3 : 2 resonance zone, but is not. 

4.2. Oval billiard 
4.2.1. Hierarchical analysis 

Figure 41 shows portions of a stick spectrum in the left two panels and smoothed 
versions of the second panel in the right two panels. The spectrum was 
generated with a wavepacket like the one in equation (4), but it is adjusted to have 
the same boundary conditions as the stadium and (cI,,~,,) are set by the classical 
energy of the centre of the wavepacket (Davis 1994~). Although the stick spectrum 

30.0 40.0 50.0 60.0 70.0 4 0 4 5 5 0 5 5 6 0  
E E 

h0.0 4.0 sb.0 5iO 6b.o i o  45 So & 60 
E E 

Figure 41. A spectrum for a wavepacket in the stadium in the top left plot, a middle portion 
of the same spectrum in the bottom left plot, and smoothed versions of this middle 
portion in the right two plots. 
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54 M. J. Davis 

68 638 

Figure 42. A tree (a) from the spectrum of figure 41, followed by a set of subtrees. Width 
refers to a scaled version of cr. To convert width to 6, multiply by 0.142. 

appears complicated, the smoothed spectrum in the third panel shows regularity 
superimposed on a broad background. The level of smoothing in the third panel was 
chosen from the hierarchical representation of the spectrum which is shown in figure 
42(a) along with subtrees in figures 42(b)-df). The subtrees correspond to five of 
the peaks in the smoothed spectrum in the third panel of figure 41 (E=48.0-52.0). 

The subtrees show many strong groupings, based on the differences in nodal 
heights. For example, the subtrees in figure 42 ( b )  and (c) show strong propensities 
for three groups, the one in figure 42 ( d )  shows a weaker propensity for three groups, 
the one in figure 42 (e) shows a strong propensity for four groups, and the subtree in 
figure 42df) shows a propensity for either four or five groups. The groupings in 
figure 42 are comparable to those in figure 36, based on a statistical analysis (Davis 
1993). So it seems likely that much of the analysis of energy transfer pathways 
presented in R3.2. and 4.1. and Davis (1994a, b) could be used to understand the 
quantum dynamics and the classical-quantum correspondence for the stadium. 

Figure 43 presents smoothed states for the subtrees of figure 42. Like some of the 
previous resuits (figure 23), the smoothed states appear to be part of a progression, 
but are difficult to assign. These states are noticeably different than their parents in 
figure 44, indicating extensive energy transfer, which is not surprising considering the 
chaotic classical dynamics of the stadium. 

4.2.2. Diabatic states 
As noted in $3.3., a good way to study bifurcations of eigenstates is to follow 

them in parameter space. To do this the eigenstates must be followed through 
avoided crossings, and we refer to these as 'diabatic states'. They are not diabatic in 
the usual sense, because the eigenstates are followed by jumping onto a new 
adiabatic curve at an avoidance. The jump is done based on an investigation of the 
correlation diagram and coordinate and phase space plots of the eigenstates. This is 
not a foolproof way to follow the eigenstates, but all the methods we could think of 
encounter difficulties at broad avoidances. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Analysis of excited eigenstates 55 

Figure 45 shows a portion of the correlation diagram for the oval billiard (even- 
even eigenstates). Superimposed on it is a line of large dots which is an estimate of a 
diabatic state in the sense described above. Although this state is straightforward to 
follow through most of the avoidances, difficulties arise at the large avoidance near 
0.14, and at high 6, where there are several close adiabatic curves. Figure 46 shows a 
series of eigenstates along the diabatic curve. A bifurcation occurs between 6 = 0.2 
and 0.5 like the one pictured in figures 29-31. The first four plots in figure 46 
(S= -0.1 to 0.2) are also interesting because the first three eigenstates are similar 
and there is a significant change at the fourth, after the broad avoidance noted 
above. 

Figure 47 shows a set of diabatic curves as defined above. The curve in the lower 
right is the one drawn on figure 45. In these plots it is often difficult to extrapolate 
from before an avoidance to after one. This sort of discontinuity is different from the 
usual view of what occurs at an avoidance, for example in the problem of' two 
potential energy curves (for example, chap. XI of Landau and Lifshitz 1977). In that 
case, the potential curves are derived from a Hamiltonian where some of the terms 
are left out and there are well defined off-diagonal matrix elements which couple the 
curves. The curves in figure 47 are the actual eigenvalues, and it may be difficult to 
define off-diagonal matrix elements for them. 

4.2.3. Semiclassical analysis of the bijiurcation of the eigenstates 
Figure 48 shows a series of separatrices like those presented earlier (figures 30 

and 3 1). The separatrix gets larger as 6 increases and figure 49 shows how the last six 
eigenstates of figure 46 behave relative to it. The eigenstate at 6 = 0.2 has a peak 
which lies outside the separatrix and the eigenstates at 6=0*5, 0.6 and 0.66 have 
densities which lie largely inside the separatrix, an indication of the bifurcation. The 
eigenstates at 6=0.3 and 0.4 appear to lie right on the separatrix. Owing to its 
elongated shape, it is assumed that semiclassical quantization conditions exist 
outside the separatrix for the eigenstate at 6=0.3. Tunnelling across the separatrix 
causes the state to develop a maximum right at the periodic orbit (Davis 1988). 

7 spl 
547 - 568 

9 spl 
569 - 588 

15 spl I2 spl 
589 - 616 6V - 638 

11 spl 
639 - 665 

Figure 43. Smoothed states for the subtrees of figure 42(b-f) are shown. The real parts of 
the states are plotted. 
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9s 56 M. J.  Davis 

Figure 44. Parent eigenstates of the smoothed states of figure 43. 

The analysis can be made more quantitative by measuring the area inside the 
separatrix as a function of 6 ,  as shown in figure 50 (a). The area is calculated at k = 1 
(equation 9). Since the billiards are scaling systems, the area at any value of k can be 
calculated via the following relationship: 

A,=k A , ,  (10) 
where A ,  is the area inside one half of the separatrix at k= 1.0 and A,  is the area at 
some other value of k. To make an estimate of where the bifurcation takes place the 
one-dimensional quantization condition 

A,=(n+ 1) h (1 1) 

Figure 45. A diabatic curve (thick dots) is plotted here along with several adiabatic curves 
(30-60). 
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30ee 6=-0.100 33ee 6 =  0.000 34ee 6 = 0.100 
k = 21.1840 k =  225560 k = 23.7052 

41ee 6= 0.500 43ee 6 = 0.600 43ee 6 =  0.660 

Figure 46. Eigenstates which lie along the diabatic curve of figure 45. 

is used, where A,  refers to the quantizable area. Since h = 1.0, and area at k =  1.0 has 
been calculated, we write the following relationship: 

2(n+ 1) 7c 

A ,  . 
k, = 

Figure 50 ( b )  shows this curve for n = 3, the value for the diabatic state studied here, 
and also includes the diabatic curve. These curves cross between 6 =0.412 and 0.414. 
The accuracy of this estimate is assessed in figure 51, where Husimi transforms of the 
eigenstates near these values of 6 are presented. Based on the shape of the Husimi 
transforms, it is estimated that the eigenstate crosses the separatrix at 6 = 0.36, where 
the separatrix cuts across a set of ridges. The estimate is approximate, because there 
is only one quantum condition and the Husimi transform is a smooth version of the 
Wigner transform (Heller 1976), which is a more natural choice for studying such 
things. This estimate is reasonable, considering the degree of chaos near the 
separatrix (Davis et al. 1991). 

4.2. Photodetachment spectrum of OHCI- 
Photodetachment spectra have proven to be an interesting way to probe the 

dynamics of ground state potential energy surfaces near or at the transition state, 
and the study of such spectra has been referred to as ‘transition state spectroscopy’. 
We refer readers to two recent reviews (Schatz 1990, Metz et al. 1992), and recent 
papers (Bradforth et al. 1993, Grayce et al. 1993, Davis et al. 1994). 
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Figure 47. A series of diabatic curves. The curve from figure 45 is on the bottom right. The 
headings include the range of adiabatic curves (for example 27-38 on the upper left). 
Each plot also includes two pairs of numbers. The first set are the Cartesian quantum 
numbers (nx, n,,) which can be assigned previous to bifurcations like the one in figure 
46. In several cases Cartesian quantum numbers could not be assigned and (-,-) is 
indicated. The second pair of numbers show the radial and angular nodes, with the 
first number being radial. The designations of (10,6) and (3,lO) (bottom right) can be 
compared with the pictures in figure 46. 

Theoretical results for OHCl were generated from an L2 basis set calculation 
(Davis et al. 1994) in the manner of Bowman and co-workers (Gazdy and Bowman 
1989). This makes the scattering problem similar to the bound problem for which 
the hierarchical analysis was developed, and thus can be used in this case. Although 
the Lz nature of the calculation is approximate, the hierarchical analysis can be used 
to discern at what level of resolution the calculation is accurate through examination 
of the smoothed states (Davis et al. 1994). 

Figure 52 shows the tree generated from the theoretical version of the OHCl- 
photodetachment spectrum. It is presented in two pieces corresponding to the two 
peaks of figure 53. The bottom row of figure 53 shows smoothed states associated 
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d = 0.0 6 = 0.3 

e 

0 

Figure 48. The broken-up separatrix for the oval billiard as a function of 6. These are (j, p,) 
surfaces of section. 

36ee 6 = 0.200 
k = 24.6946 

41 ee 6 = 0.500 

37 ee 6 = 0.300 
k = 25.4709 

I 

39 ee 6 = 0.400 
k = 26.3630 

43 ee 6 =  0.600 43 ee 6 =  0.660 
k = 26.993 

I I 
I I I I  

k = 27.1643 

Figure 49. Husimi transforms of some of the eigenstates of figure 46 plotted along with the 
relevant separatrix to demonstrate how the bifurcation occurs in phase space. 
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60 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 

6 
Figure 50. The top plot shows the area inside the separatrix as a' function of 6. The bottom 

plot shows the diabatic curve from figure 45 as a solid line, along with the one- 
dimensional quantization condition of equation (12). 

with the peaks above them plotted on top of potential contours (dotted lines) for the 
OHCl potential surface. The coordinate system in these plots is Jacobi, with the 
centre of mass of OH at (0,O) and the C1-atom fixed along the x-axis at R = 5-9107 
au ( R  is the distance from the C1 atom to the centre of mass of OH). The H-atom is 
allowed to move in the plane of the 0-C1 bond. Figure 53 demonstrates that the 
states are a short progression in an H-stretch which is mostly OH in character, thus 
assigning the two peaks. 

Figure 54 presents a higher resolution version of the first peak in figure 53. The 
level of resolution was chosen from the tree on the top of figure 52, where there is a 
large gap between the eighth and ninth nodes. The smoothed spectrum has regularly 
spaced peaks which fit an OH rotor spectrum and the bottom four plots in figure 54 
investigate this. These plots have the same axes limits as those in figure 53 and are 
generated at the same value of R .  These smoothed states confirm the OH rotor 
assignment of the peaks above them, but they are truly above barrier hindered 
rotors, because they become pinched as they cross y = 0-0 near x = 2-0 (collinear). 

5. Conclusions 
In this paper I have reviewed work on the analysis of highly excited vibrational 

eigenstates. The analysis seems useful, because of the success researchers have had in 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Analysis of excited eigenstates 61 

39 ee 6 = 0.360 39ee 6 =  0.370 39 ee 6 = 0.380 
k = 26.0120 k = 26.1021 

39 ee 6 = 0.390 39 ee 6 = 0.410 

Figure 5 1. More Husimi transforms along the diabatic curve of figure 45 are plotted along 
with a separatrix. 

v = 0 peak 

1.2 1 
2.0 

1.6 

1.2 s 
9 

0.8 

0.4 

v = 1 peak 

427 1262 

Figure 52. Two subtrees for the OHCl- photodetachment spectrum. The numbers at the 
bottom list the lines from the L2 calculation. The widths have been scaled and can be 
converted to u by multiplying by 0.01 501. 

finding the eigenvalues of triatomic and tetra-atomic molecules (see the reviews by 
Bacic and Light (1989), Sibert (1990), the collection of articles in Bowman and 
Ratner (1991), and recent articles on the vibrational eigenstates of acetylene by 
Bentley et al. (1992), Sibert and Mayrhofer (1993), for example). With the possibility 
of generating hundreds or perhaps thousands of eigenstates, it seems that there will 
be a need for processing this information, because a cursory examination of either 
eigenstates or wavepacket dynamics may be difficult to interpret. This point was 
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: x 0- 
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5.9107 3.38Y0-3 5.9107 3.96*104 
419 - 426 4-1427 - 1262 

-4 -I 
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-4 - 
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X X 

Figure 53. A smoothed version of the photodetachment spectrum is shown on the top and 
the bottom plots show smoothed states associated with the two peaks. Also included 
with the smoothed states are potential contours. These states are plotted in a 
coordinate system described in the text, with R = 5.9107 au, as indicated on each plot. 
The headings also include the maxima of the states and the range of lines used from the 
L2 calculation. 

---- 
Figure 54. A higher resolution version of the first peak of figure 53 is shown on the top. The 

bottom plots are smoothed states associated with peaks 1-4. These are hindered rotor 
states with the value of J running from 7 to 10. 
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discussed in some detail in §2.3., with figures 3-5 and 7 pointing to such a need. 
Another, related reason for the analysis is the complexity of spectra of highly excited 
molecules. Given a model of a spectrum based on the eigenstates, it is possible to 
assign it and to understand the intramolecular dynamics associated with the 
spectrum in a relatively straightforward manner using the hierarchical analysis. I 
also wish to point to the utility of the semiclassical and hierarchical analyses for the 
question of the classical-quantum correspondence in systems which are classically 
chaotic, as discussed in ss3.3. and 4.2. 

Future work is proceeding in several directions. First of all, more applications 
are planned, with the study of the intramolecular dynamics of HOz (Gazdy and 
Bowman 1992) at a preliminary stage. We also plan to make a more explicit 
connection between the semiclassical and hierarchical analyses, rather than the 
implicit connection made so far (i.e. interpretation of the hierarchical analysis was 
based in part on the phase space structure). Finally, I wish to emphasize a 
continuing interest in the issue of the quantum mechanical manifestations of 
classical chaos discussed in 44.2. It seems particularly worthwhile to study such 
issues along a correlation diagram for two reasons. First, the bifurcations of 
eigenstates can be studied in a continuous manner, and second, the role of avoided 
crossings can be assessed. Finally, I wish to note again the interesting phenomenon 
presented in 54.3.: the apparent discontinuity in the ‘diabatic’ states on either side of 
an avoided crossing (put more precisely, the apparent lack of simple extrapolation). 
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